对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。对数运算,实际上也就是指数在运算。
对数函数的运算公式
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R);
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R);
(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1);
(6)log(a^n)M^m=(m/n)log(a)M;
(7)对数恒等式:a^log(a)N=N; log(a)a^b=b。
对数函数指的是什么
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
对数函数在运算中常用的基本规则
1、底数必须是正实数,且不能等于1;
2、操作数(真数)必须是正实数;
3、对同一个底数的对数,可以通过加减法则和换底公式互相转换;
4、在操作时,尽量使用简化式子的方法来简化复杂的运算,以减少计算错误的可能性。
对数函数的性质
1、定义域为非负数;
2、值域为实数集R;
3、对数函数的图像过定点(1.0);
4、当底数大于1时,在定义域上位单调增函数,当底数大于零小于1时,在定义域上是单调减函数;
5、非奇非偶函数。
二次函数的顶点坐标公式
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)。
(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0)。
(3)交点式(与x轴):y=a(x-x1)(x-x2)。
(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0。
上一篇:
对数函数的基本性质下一篇:
对边比邻边是什么函数相关资讯
对数函数是高中数学中的一个重要概念,对数函数的公式运算是对数函数的基本内容之一。对数函数公式运算包括对数函数的乘积、商、幂、根式等运算,这些运算在高中数学中有着重要的应用。下面我们...
数量积的运算公式是:a*b=|a||b|cosθ,若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。数量积是指接受在实数R上的两个向量,并返回一个实数值标...
复数是形如a+bi的数。式中a,b为实数,i是一个满足i^2=—1的数,因为任何实数的平方不等于—1,所以i不是实数,而是实数以外的新的数。在复数a+bi中,a称为复数的实部,b称...
向量的计算公式是a+b=(x1+x2,y1+y2),在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。向量可以形象化地表示为带箭头的线段。箭头所指:代表向...
对于一个复数z=a+bi,其中a是实部,b是虚部。复数z的绝对值等于其实部a的平方加上虚部b的平方的平方根,即:|z|=√(a^2+b^2)这个公式可以用来计算任意复数的绝对值。复...
最新资讯