向量的计算公式是a+b=(x1+x2,y1+y2),在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。
向量的基本运算公式
ab+bc=ac、a+b=b+a、(a+b)+c=a+(b+c)、a+0=0+a=a和ab-ac=cb。
向量是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何对象。
数学向量的三种表示方法
第一种,根据它的含义来表示,这和物理中,画力的示意图是一样的,一天线段的一端加上箭头,线段两端点用A、B表示。
在表示的时候,没有箭头的线段的一端先说,举一个例子,A→B,表示为Ab(AB上面有→)。
第二种,我们用字母来表示,向量具有大小,那么,它的大小是多少,我们就怎么表示,我们用表示它的长度的字母来表示。
如果向量大小是a,表示为a(a上面标→),同样的道理,如果向量大小是b(同样,我们也必须在上面表示→箭头)。
第三种,用坐标来表示。x叫做向量a在x轴上的坐标,y叫做a在y轴上的坐标,和平时表示其他的数字坐标一样。
向量运算
1、零向量
零向量非常特殊,因为它是唯一大小为零的向量。对于其他任意数m,存在无数多个大小(模)为m的向量,他们构成一个圆。零向量也是唯一一个没有方向的向量。
2、负向量
负运算符也能应用到向量上。每个向量v都有一个加性逆元-v,它的维数和v一样,满足v+(-v)=0。要得到任意维向量的负向量,只需要简单地将向量的每个分量都变负即可。
几何解释:向量变负,将得到一个和向量大小相等,方向相反的向量。
3、标量与向量的乘法
虽然标量与向量不能相加,但它们可以相乘。结果将得到一个向量。与原向量平行,但长度不同或者方向相反。
标量与向量的乘法非常直接,将向量的每个分量都与标量相乘即可。如:k[x,y,z]=[xk,yk,zk]。
向量也能除以非零向量,效果等同于乘以标量的倒数。如:[x,y,z]/k=[x/k,y/k,z/k]。
上一篇:
数学中的向量是什么意思下一篇:
两个向量相乘怎么算相关资讯
导数公式指的是基本初等函数的导数公式,导数运算法则主要包括四则运算法则、复合函数求导法则(又叫“链式法则”)。下面我们就来详细看一看,倒数的基本运算法则是什么。导数的基本运算法则1...
数量积的运算公式是:a*b=|a||b|cosθ,若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。数量积是指接受在实数R上的两个向量,并返回一个实数值标...
复数是形如a+bi的数。式中a,b为实数,i是一个满足i^2=—1的数,因为任何实数的平方不等于—1,所以i不是实数,而是实数以外的新的数。在复数a+bi中,a称为复数的实部,b称...
向量是有大小和方向的量,可以用有序数对表示。一般用小写字母加箭头表示向量,例如:AB→表示向量AB。向量的基本运算包括加法、减法、数量积和向量积。其中,向量的加法和减法满足平行四边...
平面向量基本定理主要应用于平面向量运算,它可以用于求解三角形和圆的关系,计算叉积和点面积,求解抛物线的中心,解决线性方程组的特殊解,以及证明连续多边形的属性等。平面向量的基本定理是...
最新资讯