复数的五种表示方法分别是代数式、拆分式、指数式、极坐标式和三角式。代数式指的是将复数按照实部和虚部的形式进行书写,即:z=a+bi。其中,a是复数的实部,它表示复数在实轴上的位置;b是复数的虚部,它表示复数在虚轴上的位置。
复数的五种表示方法
1、几何形式。复数z=a+bi用直角坐标平面上点Z(a,b)表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。
2、向量形式。复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数的加、减法运算得到恰当的几何解释。
3、三角形式。复数z=a+bi化为三角形式。
z=|z|(cosθ+isinθ)式中|z|=,叫做复数的模(或绝对值);θ是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。
4、指数形式。将复数的三角形式z=|z|(cosθ+isinθ)中的cosθ+isinθ换为eiq,复数就表为指数形式。
复数运算公式
(1)加法运算:设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。
(2)乘法运算:设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
(3)除法运算:复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。
实数与复数的关系
实数和复数在数学和科学中有密切的联系和应用。实数是复数的一种特殊情况,可以看作虚部为零的复数。
1、实数到复数的扩展:实数可以通过加上零虚部来表示为复数的形式,即a可以表示为a+0i。
2、复数到实数的缩减:复数如果虚部为零,它可以缩减为实数,即a+0i可以表示为a。
3、实数和复数的运算:实数和复数可以进行加法和乘法运算,通过实数和虚数单独运算,然后再合并得到结果。
相关资讯
表示函数的三种方法:图像法、列表法、解析法从直观、精准等方面归纳解析法的优点:函数关系清楚,容易从自变量的值求出其对应的函数值,便于研究函数的性质。列表法的优点:不必通过计算就知道...
向量的表示方法分别有:代数表示、几何表示、坐标表示。在数学中,向量指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。向量的...
定义域是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域的题型主要包括抽象函数,一般函数,函数应用题三种。下面我们先来了解一下,定义域的三种表示方法分别是...
集合的表示法通常有四种,即列举法、描述法、图像法和符号法。集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。...
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中...
最新资讯