当前位置:

学生网

 > 

知识解答

 > 

代数式定义是什么

代数式定义是什么

2024-02-05 13:14 463人阅读

代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。例如:ax+2b,-2/3,b^2/26,√a+√2等。

代数式定义是什么

用运算符导(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。数的一切运算规律也适用于代数式。单独的一个数或者一个字母也是代数式。带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式。

代数式是一种常见的解析式,对变数字母仅限于有限次代数运算(加、减、乘、除、乘方、开方)的解析式称为代数式。

注意:

1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈。

2、可以有绝对值。例如:|x|,|-2.25|等。

代数式性质

(1)单独一个数或一个字母也是代数式,如-3,a.

(2)代数式中只能有运算符号,不应含有等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈,也就是说,等式或不等式不是代数式,但代数式中可以含有括号。可以有绝对值。例如:|x|,|-2.25|等。

(3)代数式中的字母表示的数必须使这个代数式有意义,即在实际问题中,字母表示的数要符合实际问题。

代数式的分类

在实数范围内,代数式分为有理式和无理式。

一、有理式

有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。

整式有包括单项式(数字或字母的乘积,或者是单独的一个数字或字母)和多项式(若干个单项式的和)。

1、单项式

没有加减运算的整式叫做单项式。

单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数。

单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式

几个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。齐次多项式:各项次数相同的多项式叫做齐次多项式。

二、无理式

我们把含有字母的根式、字母的非整数次乘方,或者是带有非代数运算的式子叫做无理式。无理式包括根式和超越式。我们把可以化为被开方式为有理式,根指数不带字母的代数式称为根式。

我们把有理式与根式统称代数式,把根式以外的无理式叫做超越式。

相关资讯