平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
平面向量的概念及线性运算
概念:平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
平面向量的线性运算:
(1)三角形法则
向量a-向量b=向量a+(-向量b)
(2)平行四边形法则
加法交换律:向量a+向量b=向量b+向量a
加法结合律:(向量a+向量b)+向量c=向量a+(向量b+向量c)
平面向量的运算性质
向量同数量一样,也可以进行运算。向量可以参与多种运算过程,包括线性运算(加法、减法和数乘)、数量积、向量积与混合积等。
下面介绍运算性质时,将统一作如下规定:任取平面上两点A(x1,y1),B(x2,y2),C(x3,y3)。
加法:
已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。
用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点。
四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,简记为:共起点对角连。
向量的相关概念表示
向量:在平面中,既有大小又有方向的量。用向量a表示
向量的模:向量a的长度,也就是表示向量a的有向线段的长度。
零向量:长度为0,方向任意的向量。
上一篇:
向量和向量组的区别下一篇:
五边形内角和的计算公式相关资讯
平面向量定义三要素是起点、方向、长度。平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量概念的要素是什么1、起点...
我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。下面本文将为大家详细介绍一下,复数的概念与运算。复数的概念与运算一、概念形如a+b...
长方体、圆柱、球、长(正)方形、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的,它们都是几何图形。其中,各部分不都在同一平面内的图形(如长方体、正...
两个方向相同或相反的非零向量叫做平行向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,共线向量是平行向量,平行向量包含共线向量。平面向量共线是什么意思两个向量共...
向量的计算公式是a+b=(x1+x2,y1+y2),在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。向量可以形象化地表示为带箭头的线段。箭头所指:代表向...
最新资讯