函数有很多种类,主要包括线性函数、指数函数、对数函数、幂函数、三角函数、微分函数,还有很多自定义函数。一种函数是一种特殊的表达式,它把其中的一些变量映射到另外一个变量的值上。函数本质上是把一些参数值映射到一个输出值上,也可以称为映射。
函数的概念是什么
函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A)。那么这个关系式就叫函数关系式,简称函数。
简单来讲,对于两个变量x和y,如果每给定x的一个值,y都有唯一一个确定的值与其对应,那么我们就说y是x的函数。其中,x叫做自变量,y叫做因变量。
函数的表示方法
1、列表法。用表格的方式把x与y的对应关系一一列举出来。
用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。
2、解析法。用解析式把把x与y的对应关系表述出来,最常见的一种表示函数关系的方法。
3、图像法。在坐标平面中用曲线的表示出函数关系,比较常用,经常和解析式结合起来理解函数的性质。
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。
函数的奇偶性
设f(x)为一个实变量实值函数,则f为奇函数若下列的方程对所有实数x都成立:
f(x) = f( - x) 或f( -x) = - f(x) 几何上,一个奇函数与原点对称,亦即其图在绕原点做180度旋转后不会改变。
奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
设f(x)为一实变量实值函数,则f为偶函数若下列的方程对所有实数x都成立:
f(x) = f( - x) 几何上,一个偶函数会对y轴对称,亦即其图在对y轴为镜射后不会改变。
偶函数的例子有|x|、x^2、cos(x)和cosh(sec)(x)。
偶函数不可能是个双射映射。
上一篇:
二次函数的定义和性质下一篇:
二元一次不等式怎么解相关资讯
函数是指两个非空数集之间的映射关系,通常用符号f(x)表示。定义域是自变量的取值范围,值域是因变量的取值范围。函数的概念包括变量、定义、值和对应关系等。函数的概念及其表示函数是数学...
锐角三角函数是以锐角为自变量,以比值为函数值的函数。我们把锐角∠A的正弦、余弦、正切和余切都叫做∠A的锐角函数。那么,锐角三角函数有哪些性质呢?下面我们就来具体看一看!锐角三角函数...
一次函数是数学中常见且重要的函数类型之一。它的定义可以用以下形式来表示:f(x)=ax+b,其中a和b为常数,且a≠0。一次函数的图像是一条直线,具有许多独特的性质和特点,下面我们...
求函数最值是数学中常见的问题之一,它在实际生活中也有广泛的应用。在求函数最值时,需要考虑函数的定义域和导数的符号变化等因素。本文将为大家介绍几个,求函数极值的方法。求函数极值的方法...
①首先确定函数定义域。②二次函数通过配方或分解因式可求极值。③通过求导是求极值最常用方法。函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同...
最新资讯