在一般情况下,如果x与y关于某种对应关系函数f(x)相对应,y=f(x),则y=f(x)的反函数为y=f-1(x)。反函数就是把原函数的x,y互换,原函数与反函数的导数互为倒数。
反函数与原函数图像的关系
1、反函数的定义域是原函数的值域,反函数的值域是原函数的定义域;
2、互为反函数的两个函数的图像关于直线y=x对称;
3、原函数若是奇函数,则其反函数为奇函数;
4、若函数是单调函数,则一定有反函数,且反函数的单调性与原函数的一致;
5、原函数与反函数的图像若有交点,则交点一定在直线y=x上或关于直线y=x对称出现。
反函数的定义:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f﹣(x)。反函数y=f﹣(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
原函数的定义:对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
反函数有哪些性质
1、函数f(x)与它的反函数f-1(x)图象关于直线y=x对称。
2、函数存在反函数的充要条件是,函数的定义域与值域是一一映射。
3、一个函数与它的反函数在相应区间上单调性一致。
反函数与原函数的转化公式
反函数与原函数的转化公式是x=f^(-1)(y),其中y表示原函数,而原函数是指对于一个定义在某区间的已知函数。
如果存在可导函数F(x),则该区间内的任一点都存在dF(x)=f(x)dx。且若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”,函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数。
奇偶性怎么判断
1、定义法
利用奇偶函数的定义来判断(这是最基本,最常用的方法)定义:如果对于函数y=f(x)的定义域A内的任意一个值x,都有f(-x)=-f(x)则这个函数叫作奇函数f(-x)=f(x),则这个函数叫作偶函数。
2、求和(差)法
若f(x)-f(-x)=2f(x),则f(x)为奇函数。
若f(x)+f(-x)=2f(x),则f(x)为偶函数。
3、求商法
若f(-x)/f(x)=-1,(f(x)≠0)则f(x)为奇函数。
若f(-x)/f(x)=1,(f(x)≠0)则f(x)为偶函数。
上一篇:
成反比例与反比例函数的区别下一篇:
梯形知道上底和下底怎么求高相关资讯
反函数与原函数的关系是:反函数的导数等于反函数导数的倒数,在一些高等学科的数学中,我们经常会接触到原函数,原函数比较适用于金融领域和数学领域,与其相对的就是反函数,而反函数经常用作...
如果函数f(x)的导函数为f‘(x),那么f(x)就是f’(x)的一个原函数。也就是说,原函数和导函数是一一对应的关系。但需要注意的是,一般来说,一个函数有无数个原函数,因为在求导...
在数学中,函数与反函数之间有着密切的关系。一个函数的反函数是将其输出作为输入,将其输入作为输出的函数。例如,如果函数f(x)将x映射到y,则其反函数f-1(y)将y映射回x。因此,...
原函数的导数等于反函数导数的倒数。设y=f(x),其反函数为x=g(y),可以得到微分关系式:dy=(df/dx)dx,dx=(dg/dy)dy。那么,由导数和微分的关系我们得到,...
系数a决定了抛物线的开合方向。当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。a的绝对值越大,抛物线越窄;系数b对抛物线的对称轴产生影响。二次函数的图像与系数的关系1、...
最新资讯