二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。二次函数性质:a正号说明开口向上,负号说明开口向下;a的绝对值越大,抛物线开口越小;c表示抛物线与y轴的交点,图像过(0,c)点。
二次函数的图像与性质
二次函数y=ax²+bx+c(a≠0),当y=0时,二次函数为关于x的一元二次方程,即ax²+bx+c=0(a≠0)。此时,函数图像与x轴有无交点即方程有无实数根,函数与x轴交点的横坐标即为方程的根。
1、二次函数y=ax²,y=ax²+k,y=a(x-h)²,y=a(x-h)²+k,y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。
2、抛物线y=ax²+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b²]/4a)。
3、抛物线y=ax²+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。
二次函数的定义
二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
二次函数图像b的大小怎么判断
二次函数的对称轴是x=-b/2a,在a参数不变的前提下,改变b参数,即可改变二次函数对称轴的位置,即b参数可以决定函数图像的水平位置。自然,函数图像越偏离y轴,b的绝对值就越大。
如何比较二次函数值的大小
①直接代入比较法:如果点的横坐标和抛物线的表达式已知,可以将横坐标分别代入并求出函数值,比较大小即可。
②利用增减性比较法:
a、已知几点在对称轴的同侧:根据二次函数的增减性比较大小;
b、已知几点在对称轴的异侧:要根据对称性转化到同侧(二次函数对称点的函数值相同),再根据增减性比较大小。
③抛物线开口向上:点到对称轴的距离越大,对应的函数值越大;
抛物线开口向下:点到对称轴的距离越大,对应的函数值越小;
口诀:向上越大越大,向下越大越小。
上一篇:
正比例函数的图像及性质下一篇:
二次函数的图像与系数的关系相关资讯
二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。二次函数的图像是抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。二次函数...
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c,则称y为x的二次函数。其中,a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口...
余弦函数在[-π+2kπ,2kπ]上单调递增,在[2kπ,π+2kπ]上单调递减;余弦函数关于x=2kπ对称,关于(π/2+kπ,0)中心对称;正弦余弦函数的周期都是2π。余弦函数...
正弦型函数是形如y=Asin(ωx+φ)+k的函数,其中A,ω,φ,k是常数,且ω≠0。正弦型函数是实践中广泛应用的一类重要函数,下面我们就来看看正弦型函数的图像和性质。正弦型函数...
二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。二次函数表达式为y=ax²+bx+c(且...
最新资讯