等比数列求和公式为:Sn=n*a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)(q不等于1)。等比数列求和公式是求等比数列之和的公式。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公式可以快速的计算出该数列的和。
等比数列的求和公式
求和公式:Sn=n*a1(q=1),Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q)(q≠1)(q为比值,n为项数)。
特殊性质:
①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每k项之和仍成等比数列;
③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;
④若G是a、b的等比中项,则G^2=ab(G≠0);
⑤在等比数列中,首项a1与公比q都不为零。
注意:上述公式中an表示等比数列的第n项。
等比数列的前n项和公式介绍
等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。
性质:
(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。
(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an×bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。
(5)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。
等差数列公式
第n项的值an=首项+(项数-1)×公差
an=am+(n-m)d,若已知某一项am,可列出与d有关的式子求解an
例如:a10=a4+6d或者a3=a7-4d
前n项的和Sn=首项×n+项数(项数-1)公差/2
公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)
项数=(末项-首项)÷公差+1
末项=首项+(项数-1)×公差
当数列为奇数项时,前n项的和=中间项×项数
数列为偶数项,前n项的和=(首尾项相加×项数)÷2
等差数列中项公式2an+1=an+an+2其中{an}是等差数列
等差数列的和=(首项+末项)×项数÷2
上一篇:
带根号的复合函数怎么求导下一篇:
质数和质因数的区别是什么相关资讯
等比数列通项公式有:当q=1时,该数列的前n项和Tn=a1*n,当q≠1时,该数列前n项的和Tn=a1*(1-q^(n))/(1-q)等等。一般形式是:a1,a1*q,a1*q^2...
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。其中{an}...
等比数列是指一个数列中的每一项与它之前的项的比值都相等的数列。等比数列的项数公式可以通过以下两种方法得到:公式法和递归法,下面我们就来具体看一看!等比数列的项数怎么求方法一:公式法...
等比数列就是从第二项起,后一项与它的前一项的比值等于同一个不为零的常数的一种数列,比如:2、4、6、8、10……就是等比数列,后一项与它的前一项的比值为2。等比数列什么意思等比数列...
所有点不在同一平面上的图形叫立体图形。对现实物体认识上的一种抽象,即把现实的物体在只考虑其形状和大小,而忽略其它因素的基础上在平面上的表示。规则立体图形一般都有固定的公式,不规则立...
最新资讯