研究抛物线y=ax²+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)²+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了。
抛物线顶点怎么求
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k(a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。
当h>0时,y=a(x-h)²的图象可由抛物线y=ax2;向右平行移动h个单位得到;
当h<0时,则向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;
当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。
抛物线开口大小由哪个量决定
抛物线开口大小由a的绝对值决定。抛物线f(X)=ax²+bx+c,|a|越大抛物线开口就越小;|a|越小抛物线开口就越大。因为a越大,那么x变化后所呈现的效果就越明显,其具体体现在抛物线的开口大小上面。
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左。因为对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号。
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号。
抛物线焦点坐标的方程
抛物线的标准方程为y=2px,它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0),准线方程为x=-p/2。离心率e=1,范围:x≥0。
抛物线的方程为y=-2px,它表示抛物线的焦点在x的负半轴上,焦点坐标为(-p/2,0),准线方程为x=p/2。离心率e=1,范围:x≤0。
抛物线的方程为x=2py,它表示抛物线的焦点在y的正半轴上,焦点坐标为(0,p/2),准线方程为y=-p/2。离心率e=1,范围:y≥0。
抛物线的方程为x=-2py,它表示抛物线的焦点在y的负半轴上,焦点坐标为(0,-p/2),准线方程为y=p/2。离心率e=1,范围:y≤0。
上一篇:
抛物线解析式怎么求下一篇:
抛物线解析式的三种形式相关资讯
抛物线是二次曲线,是根据一元二次方程的变形推导出的,表示沿着一定角度下降或上升的连续曲线,一般表示成y=a*x^2+b*x+c形式,其中a是曲线的开口形状和轴线方向,b是曲线拐角位...
抛物线解析式的求法:y=ax22+bx+c,y=a(x+h)22+k等等,抛物线是指平面内到一个定点F焦点和一条定直线l准线距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准...
抛物线切线方程如下:抛物线y2=2px上一点(x0,y0)处的切线方程为y0y=p(x+x0),抛物线y2=2px上过焦点斜率为k的方程为y=k(x-p/2)。平面内,到定点与定直...
二次函数也叫做二次方程或抛物线。在平面直角坐标系中,二次函数可以表示为$y=ax^2+bx+c$的形式,其中$a$代表抛物线的开口方向和大小,$b$代表平移,$c$代表$y$轴截距...
所有点不在同一平面上的图形叫立体图形。对现实物体认识上的一种抽象,即把现实的物体在只考虑其形状和大小,而忽略其它因素的基础上在平面上的表示。规则立体图形一般都有固定的公式,不规则立...
最新资讯