数列是一种定义域为正整数集或其子集的一种特殊的函数,数列的通项公式则是相应的函数解析式。任何数列问题都蕴含着函数的本质,解决数列问题时,应该充分利用函数的有关知识,以它的概念,图像,性质为纽带,从而可以用函数思想解决数列问题。
数列和函数的关系
数列与函数的关系是:函数和数列的问题可以相互转化。函数问题转化成数列问题来解决,就是数列法。如:先认识数列极限,再认识函数极限。数列的问题转化成函数问题来解决,就是函数法。
它们的变量都满足函数定义,都是函数。可以有an=f(n),函数和数列的问题可以相互转化。函数问题转化成数列问题来解决,就是数列法。如,先认识数列极限,再认识函数极限。数列的问题转化成函数问题来解决,就是函数法。如,用求函数最值的方法来求数列的最值。
数列和函数的定义
数列,是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
数列常见题型
1、求数列的通项公式。
2、求一个数列的前n项和。
3、等差数列题型特点:原数据一般具备单调性,且数据变化幅度不大。
4、和数列题型特点:原数据具备单调性,在做差找不出规律时,可尝试做和;原数据本身不具备单调性,且变化幅度不大,则直接尝试做和。
上一篇:
函数的性质是什么下一篇:
一次函数的定义和性质相关资讯
如果函数f(x)的导函数为f‘(x),那么f(x)就是f’(x)的一个原函数。也就是说,原函数和导函数是一一对应的关系。但需要注意的是,一般来说,一个函数有无数个原函数,因为在求导...
三角函数倒数关系:tanαcotα=1;sinαcscα=1;cosαsecα=1。三角函数商数关系:tanα=sinα/cosα;cotα=cosα/sinα。平方关系:sin²...
函数与方程的关系是替代关系。函数是解决数学问题的一种工具,在问题中将量分为“变量”和“常量”,并把这些量用字母表示,将量与量之间的关系,抽象、概括为函数模型,经常用方程来进行代表。...
在数学中,函数与反函数之间有着密切的关系。一个函数的反函数是将其输出作为输入,将其输入作为输出的函数。例如,如果函数f(x)将x映射到y,则其反函数f-1(y)将y映射回x。因此,...
原函数的导数等于反函数导数的倒数。设y=f(x),其反函数为x=g(y),可以得到微分关系式:dy=(df/dx)dx,dx=(dg/dy)dy。那么,由导数和微分的关系我们得到,...
最新资讯