复数包括实数和虚数。虚数和实数有着同等地位,二者合在一起成为复数。一个复数由实部和虚部组成,用z=a+bi表示,其中a,b是任意实数。如果一个复数只有虚数部分,则称这个复数是纯虚数。
复数包含实数和虚数吗
复数包括实数和虚数。虚数和实数有着同等地位,二者合在一起成为复数。
实数是有理数和无理数的总称,定义为与数轴上的点相对应的数,是实数理论的核心研究对象,它与虚数共同构成复数。
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
虚数是什么
1、形如“a+bi”、“bi”(a、b∈R,并且b≠0)的复数都是虚数。其中“i”是虚数单位,“i”的平方等于“-1”。
2、我们把“a+bi”中的“a”称为“实部”,把“b”称为“虚部”。
3、因为实数、虚数都是复数,虚数也可以理解为虚部“b”不是0(带着“i”,并且“i”的系数不是0)的复数。
4、“虚数”的两种常见形式
(1)“a+bi”(a、b∈R,并且a≠0、b≠0)。
(2)“bi”(b∈R,b≠0)。此时,也称为“纯虚数”。
【注】其中“i”为虚数单位。
复数四则运算法则
若复数z1=a+bi,z2=c+di,其中a,b,c,d∈R,则z1±z2=(a+bi)±(c+di)=(a±c)+(b±d)i,(a+bi)·(c+di)=(ac-bd)+(bc+ad)i,(a+bi)÷(c+di)=(ac+bd)/(c2+d2)+(bc-ad)i/(c2+d2)。
其实两复数相除,完全可以转化为两复数相乘:(a+bi)÷(c+di)=(a+bi)/(c+di),此时分子分母同时乘以分母c+di的共轭复数c-di即可。
虚数单位i的乘方i(4n+1)=i,i(4n+2)=-1,i(4n+3)=-i,i4n=1(其中n∈Z)。
相关资讯
形如z=a+bi的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。那么,复数包括实数和虚数吗?复数包括实数和虚...
实数属于复数。实数和虚数共同构成复数,实数,是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。实数包括...
在数学领域中,将偶指数幂是负数的数定义为纯虚数,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i^2=-1。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数...
复数和虚数不一样,形如a+bi的数。式中a,b为实数,i是一个满足i2=—1的数,因为任何实数的平方不等于—1,所以i不是实数,而是实数以外的新的数。在复数a+bi中,a称为复数的...
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。无理数主要包含特殊意义的数...
最新资讯