利用函数和它的反函数的定义域与值域的关系,通过求反函数的定义域而得到原函数的值域,例如求函数的值域,这种类型的题目也可采用分离常数法。观察法是通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
求值域的方法有哪些
1、图像法
根据函数图象,观察最高点和最低点的纵坐标。
2、配方法
利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法
利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法
若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
5、换元法
包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
6、判别式法
判别式法即利用二次函数的判别式求值域。
7、复合函数法
设复合函数为f[g(x),]g(x)为内层函数,为了求出f的值域,先求出g(x)的值域,然后把g(x)看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据f(x)函数的性质求出其值域。
8、不等式法
基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
9、化归法
用函数和他的反函数定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。
值域的基本概念
值域,数学名词,在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
在实数分析中,函数的值域是实数,而在复数域中,值域是复数。
偶函数的定义
1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足f(x)=f(-x)如y=x*x。
2、如果知道图像,偶函数图像关于y轴(直线x=0)对称。
3、定义域D关于原点对称是这个函数成为偶函数的必要不充分条件。
相关资讯
解数学题时,我们也常常碰到求某个变量的最大值最小值之类的问题,这就是我们要讨论的最值问题,求最值问题的方法归纳起来有下几点:1、运用配方法求最值;2、造一元二次方程,在方程有解的条...
求函数最值是数学中常见的问题之一,它在实际生活中也有广泛的应用。在求函数最值时,需要考虑函数的定义域和导数的符号变化等因素。本文将为大家介绍几个,求函数极值的方法。求函数极值的方法...
抛物线解析式的求法:y=ax22+bx+c,y=a(x+h)22+k等等,抛物线是指平面内到一个定点F焦点和一条定直线l准线距离相等的点的轨迹,它有许多表示方法。求二次函数解析式有...
用四舍五入求近似数,是“舍”还是“入”,要看省略的尾数部分的最高位是小于还是等于或大于5。若小于5,则把它和右边数的数全改写成“0”;若等于或大于5,则向前一位进一,再把它和右边数...
随机抽样法就是调查对象总体中每个部分都有同等被抽中的可能,是一种完全依照机会均等的原则进行的抽样调查,被称为是一种“等概率”。随机抽样有四种基本形式,即简单随机抽样、等距抽样、类型...
最新资讯