对数函数本身不具有奇偶性,但有些函数与对应函数复合后,就具有奇偶性了。如y=㏒2x(x为绝对值)就是偶函数,证明这一函数具有奇偶性的方法是利用函数奇偶性的定义,并结合对数的运算性质。
对数函数奇偶性的判断方法
1、定义法判断:用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。
2、用必要条件判断:具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。例如,函数y=的定义域(-co,1)U(1,+0o),定义域关于原点不对称,所以这个函数不具有奇偶性。
3、用对称性判断:若f(x)的图象关于原点对称,则f(x)是奇函数。若f(x)的图象关于y轴对称,则f(x)是偶函数。
函数奇偶性的定义
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
奇函数偶函数的图像特点
1、奇函数图象关于原点对称。奇函数的图象,是个以原点为对称中心的中心对称图象。
2、偶函数图象关于y轴对称。偶函数的图象,是个以y轴为对称轴的轴对称图象。
3、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
4、如果奇函数f(x)的定义域中有“0”,则一定有f(0)=0。因此,如果一个奇函数的定义域中有“0”,则这个奇函数的函数图象一定过原点。
5、如果偶函数g(x)的定义域中有“0”,则g(0)不一定为0。因此,如果一个偶函数的定义域中有“0”,则这个偶函数的函数图象不一定过原点。
6、偶函数在对称区间上的值域相同,奇函数在对称区间上的值域关于原点对称。
上一篇:
二次函数和一次函数的图像关系下一篇:
判断函数奇偶性的一般步骤相关资讯
判断单调性的5种方法:定义法、导数法、图象法、化归常见函数法、运用复合函数单调性规律法。函数的单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。判断函数单调...
奇偶性的判断方法共有五种,分别为定义法、求和(差)法、求商法、图像观察法以及函数运算法则来判断。下面我们就来看一看,判断函数奇偶性的一般步骤是什么?判断函数奇偶性的一般步骤一般地,...
判断两个函数是否为同一函数,主要依据包括定义域、值域、对应关系。比如:如果两个函数的定义域相同,那么它们就是同一函数。例如,所有偶数的平方都是正数,因此我们说f(x)=x^2和g(...
首先,我们需要了解线性相关的定义:对于一组向量v1,v2,…,vn,如果存在一组不全为零的系数k1,k2,…,kn,使得k1v1+k2v2+…+knvn=0,那么这组向量就线性相关...
求函数最值是数学中常见的问题之一,它在实际生活中也有广泛的应用。在求函数最值时,需要考虑函数的定义域和导数的符号变化等因素。本文将为大家介绍几个,求函数极值的方法。求函数极值的方法...
最新资讯