如果一条直线与一个平面没有公共点,我们就说这条直线与这个平面平行。平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
直线平面平行的判定及其性质
性质定理:直线L平行于平面α,平面β经过L且与平面α相交于直线L‘,则L∥L’;判定定理:直线L‘在平面α上,直线L不在平面α上,且L’∥L,则L∥α。
判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行,性质定理、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
线线平行的简单判定方法
在同一平面内,两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。也可以简单的说成:
1、同位角相等两直线平行
在同一平面内,两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。也可以简单的说成:
2、内错角相等两直线平行
在同一平面内,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。也可以简单的说成:
3、同旁内角互补两直线平行。
平行线的性质
1、两条平行线被第三条直线所截,同位角相等。
简称为:两直线平行,同位角相等。
2、两条平行线被第三条直线所截,内错角相等。
简称为:两直线平行,内错角相等。
3、两条平行线被第三条直线所截,同旁内角互补。
简称为:两直线平行,同旁内角互补。
垂直的判定方法
1、垂直公理和三角形的高线定理:如果一条直线与一个平面垂直,那么这个平面内的任何一条直线都与这条直线垂直。这个公理表明,如果一条直线与一个平面垂直,那么在这个平面内的所有直线都与这条直线垂直。在一个三角形中,三条高线互相垂直。
2、内错角互补和对顶角相等:如果两直线垂直,那么它们被第三条直线所截的内错角互补。这个定理可以用来判断两条线是否垂直。如果两角是对顶角,那么它们相等。这个定理也可以用来判断两个角是否垂直。
上一篇:
垂直平行线的性质与判定下一篇:
一条直线的垂线有几条相关资讯
一条直线与一个平面无公共点(不相交),称为直线与平面平行。线面平行的判定定理为:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;平面外一条直线与此平面的垂线垂直,则这...
直线是由两个不同的点所确定的一条无限长的线段。平面是由三个不共线的点所确定的一个无限大的平面。下面我们就来看一看,直线垂直平面的判定定理。直线垂直平面的判定定理直线与平面垂直判断定...
垂直线是指两条直线相互交于一点,且交角为90度的线段。平行线是指在同一个平面内,没有相交点,且永远保持相同的距离的直线。那么,线段垂直平行线的性质和判定是什么呢?线段垂直平行线的性...
从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。其性质有两点,一是角平分线分得的两个角相等,都等于该角的一半;二是角平分线上的点到角的两边的...
如果两条线形成的三角形的两个内角正好都是90°,那么这两条线就是垂直平行线,也就是说,如果两条线在成真角三角形时,其内角均为90°,那么这两条线就是垂直平行线。下面我们就来看看,垂...
最新资讯