切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。是关于几何图形的切线坐标向量关系的研究,分析方法有向量法和解析法。接下来,我们就来看看切线方程怎么求?
切线方程怎么求
对函数求导(导函数为y=2x+3),然后求出在x=1时的导数y,此时y的值为经过x=1时的切线的斜率(根据导数的几何意义),知道切线的斜率了,然后再知道一个点的坐标就可以求出。
通常是先设切点,根据切点参数写出切线方程,再将切点的坐标代入,求出切点参数,最后写出切线方程。先把曲线方程整理成y=f(x)的形式,然后对x求导函数,切点横坐标x0对应的导函数值就是切线的斜率k,然后写出点斜式方程:y-y0=k(x-x0)即可。
例如:
比如y=x^2,用导数求过(2,3)点的切线方程。
设切点(m,n),其中n=m^2
由y'=2x,得切线斜率k=2m
切线方程:y-n=2m(x-m),y-m^2=2mx-2m^2,y=2mx-m^2
因为切线过点(2,3),所以3=2m*2-m^2,m^2-4m+3=0
m=1或m=3
切线有两条:m=1时,y=2x-1;m=3时,y=6x-9
切线公式
以P为切点的切线方程:y-f(a)=f'(a)(x-a);若过P另有曲线C的切线,切点为Q(b,f(b)),则切线为y-f(a)=f'(b)(x-a),也可y-f(b)=f'(b)(x-b),并且[f(b)-f(a)]/(b-a)=f'(b)。
几何上,切线指的是一条刚好触碰到曲线上某一点的直线。准确而言,当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的。平面几何中,将和圆只有一个公共交点的直线叫做圆的切线。
圆的切线垂直于过其切点的半径;经过半径的非圆心一端,并且垂直于这条半径的直线,就是这个圆的一条切线。
圆的切线的性质定理
(1)切线和圆只有一个公共点;
(2)切线和圆心的距离等于圆的半径;
(3)切线垂直于经过切点的半径;
(4)经过圆心垂直于切线的直线必过切点;
(5)经过切点垂直于切线的直线必过圆心。
圆的切线的判定定理
切线的判定定理,经过半径的外端并且垂直于这条半径的直线是圆的切线。圆的切线垂直于这条圆的半径。
几何语言:∵l⊥OA,点A在⊙O上;
∴直线l是⊙O的切线(切线判定定理);
切线的性质定理圆的切线垂直于经过切点半径;
几何语言:∵OA是⊙O的半径,直线l切⊙O于点A。
∴l⊥OA(切线性质定理)
推论1经过圆心且垂直于切线的直径必经过切点。
推论2经过切点且垂直于切线的直线必经过圆心。
相关资讯
抛物线切线方程如下:抛物线y2=2px上一点(x0,y0)处的切线方程为y0y=p(x+x0),抛物线y2=2px上过焦点斜率为k的方程为y=k(x-p/2)。平面内,到定点与定直...
通常是先设切点,根据切点参数写出切线方程,再将切点的坐标代入,求出切点参数,最后写出切线方程。先把曲线方程整理成y=f(x)的形式,然后对x求导函数,切点横坐标x0对应的导函数值就...
所有点不在同一平面上的图形叫立体图形。对现实物体认识上的一种抽象,即把现实的物体在只考虑其形状和大小,而忽略其它因素的基础上在平面上的表示。规则立体图形一般都有固定的公式,不规则立...
①首先确定函数定义域。②二次函数通过配方或分解因式可求极值。③通过求导是求极值最常用方法。函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同...
在求导的领域,对于带根号的导数,一般外层函数就是一个根号,先按根号求一个导数;然后在求内层函数也就是根号里面的函数的导数;最后再将两者相乘就可以了。带根号的复合函数怎么求导1、根号...
最新资讯