如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心。这时两个相似图形的相似比又叫做它们的位似比。
位似图形的定义及性质
位似图形的定义:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
位似图形的性质:
(1)位似图形一定是相似图形,而相似图形不一定是位似图形。
(2)位似图形的对应点的连线相交于一点。
(3)位似图形的对应边互相平行或在同一条直线上。
(4)位似图形上任意一对对应点,到位似中心的距离之比等于相似比。
位似图形的三要素
1、集合X,即定义域f=X。
2、集合Y,即限制值勤域的范围:Rf是Y的子集。
3、对应规则f,使每个x∈X,有惟一确定的y=f(x)与之对应。
位似与相似的关系
①位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点。
②如果两个图形是位似图形,那么这两个图形必是相似图形,但是相似的两个图形不一定是位似图形,因此位似是相似的特殊情况。利用位似,可以把一个图形放大或缩小。
内外位似图形的区别
内、外位似图形是具有相似关系的两个图形,它们的不同之处在于位似中心的位置。
内位似图形是指位似中心在对应点连线上的图形,也被称为反向位似图形。这种位似中心位于图形的内部,因此得名内位似图形。
而外位似图形则是指位似中心在对应点连线外的图形,也被称为同向位似图形。这种位似中心位于图形的外部,因此得名外位似图形。
总的来说,内、外位似图形的主要区别在于位似中心的位置,内位似图形的位似中心位于图形内部,而外位似图形的位似中心位于图形外部。
位似中心的落点
位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。
根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
上一篇:
相似三角形面积比和边长比的关系下一篇:
位似图形的判定方法相关资讯
在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果它们完全重合,那么这两个图形叫做全等图形,简称全等形。全等图形的特点是形状、大小相同。全等图形的定义和性质1、全等图形能...
三棱柱是一种底面为三角形、且与底面平行的侧面都是矩形的立体图形。它由两个平行于底面的等边三角形和三个连接这两个三角形对应顶点的矩形构成。三棱柱的定义和性质定义:三棱柱是在几何学中底...
平行六面体是底面为平行四边形的棱柱,它是一种特殊的四棱柱,共有六个面,每个面都是平行四边形。平行六面体的六个面两两平行,并且分别是全等的平行四边形。因此任何相对的两个面都可以作为它...
一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。那么,一次...
函数的定义是映射定义过来的,函数的两要素是表达式和定义域。函数通俗的来讲就是将原来定义函数的映射反过来,原函数的定义域变成值域,原函数的值域变成定义域进行新的映射,反函数的定义域就...
最新资讯