概率c公式是:C(n,k)=n(n-1)(n-2)(n-k+1)/k!,其中k≤n。例如,C(12,3)=12×11×10/3!=1320/(3×2×1)=1320/6=220。概率,亦称“或然率”,是反映随机事件出现的可能性大小。
随机事件概率计算公式
随机事件概率的计算公式为:C(n,m)*p^m*(1-p)^(n-m),其中事件的概率为p,n为随机事件,m为发生的次数,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中,具有某种规律性的事件叫做随机事件(简称事件)。
概率(旧称几率,又称机率、机会率或或然率)是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。
概率的基本公式
1、总体概率公式:P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A包含的样本点数,n(S)表示样本空间中的总样本点数。
2、条件概率公式:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B的概率。
3、乘法法则:P(A∩B) = P(A) * P(B|A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率。
4、加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A和事件B至少发生一个的概率,P(A)和P(B)分别表示事件A和事件B分别发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
5、全概率公式:P(A) = ∑[P(A|Bi) * P(Bi)],其中P(A)表示事件A发生的概率,P(A|Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率,∑表示对所有可能的Bi进行求和。
概率的考点分析
1、随机事件和概率,包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的独立性);全概公式与贝叶斯公式;伯努利概型。
2、随机变量及其概率分布,包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机变量概率密度及其性质;随机变量分布函数及其性质;常见分布;随机变量函数的分布。
3、二维随机变量及其概率分布,包括多维随机变量的概念及分类;二维离散型随机变量联合概率分布及其性质;二维连续型随机变量联合概率密度及其性质;二维随机变量联合分布函数及其性质;二维随机变量的边缘分布和条件分布;随机变量的独立性;两个随机变量的简单函数的分布。
上一篇:
指数函数的运算法则与公式下一篇:
随机事件概率的取值范围相关资讯
随机事件概率的计算公式为:C(n,m)*p^m*(1-p)^(n-m),其中事件的概率为p,n为随机事件,m为发生的次数,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复...
随机事件是指在一定条件下可能发生,也有可能不发生的事件,所以,随机事件发生的概率的范围(0,1)。利用随机事件的定义,结合概率的定义,即可得到结论。随机事件概率的取值范围0到1之间...
随机事件的概率介于0至1之间。随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件)。例如,在抛掷一枚均匀硬币的试验中,“正面...
古典概型也叫传统概率,如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。那么,古典概型的...
在条件是有限的情况下,概率为1可以认定是必然事件。在条件是无限(不可测度)的情况下,概率为1不一定是必然事件。这时候的1表示的是无穷趋近为1的一个概念。这时的1可以等于0.9999...
最新资讯