当前位置:

学生网

 > 

知识解答

 > 

两个复数相乘怎么算

两个复数相乘怎么算

2023-12-28 11:12 1268人阅读

规定复数的乘法按照以下的法则进行:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i。就是把两个复数相乘,类似两个多项式相乘,展开得:ac+adi+bci+bdi2,因为i2=-1,所以结果是(ac-bd)+(bc+ad)i。

两个复数相乘怎么算

1、复数的乘法遵从“多项式乘法法则”。

2、设a+bi和c+di为两个复数,其中a、b、c、d都为实数。则

(a+bi)·(c+di)

=ac+ad·i+bc·i+bd·i2

=ac+ad·i+bc·i-bd

=(ac-bd)+(ad+bc)i

即(a+bi)·(c+di)=(ac-bd)+(ad+bc)i

计算两个复数的乘积时,无需对复数的乘法公式死记硬背,只要先按多项式乘法法则展开,然后把“i2”换成“-1”,再合并同类项、化简成最后结果即可。

复数运算法则介绍

复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。

复数的概念

复数是指把形如 z=a+bi(a、b均为实数)的数称为复数。其中,a 称为实部,b 称为虚部,i 称为虚数单位。当 z 的虚部 b=0 时,则 z 为实数;当 z 的虚部 b≠0 时,实部 a=0 时,常称 z 为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。

虚数的概念

在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。

对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。

在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴。

相关资讯