先将其转化为斜截式方程,确定方向向量。方程为Ax+By+C=0,A、B、C为常数。将其转化为斜截式方程y=mx+b的形式,需要将其化简为y=-A/Bx-C/B的形式,m=-A/B为斜率。方向向量可以表示为α=(B,-A)^T,T表示向量的转置。这个向量的方向与斜率相同,长度为1,可以用于表示直线的方向。
一般式方程怎么求方向向量
1、直线的方向向量
把直线上的向量以及与之共线的向量叫做直线的方向向量。
所以只要给定直线,便可构造两个方向向量(以原点为起点)。即已知直线l:ax+by+c=0,则直线l的方向向量为d1=(-b,a)或d2=(b,-a)。
2、空间直线的一般方程求方向向量
空间直线点向式方程的形式为(和对称式相同)(x-x0)/l=(y-y0)/m=(z-z0)/n,其方向向量就是(l,m,n)或反向量(-l,-m,-n)。
比如直线x+2y-z=7-2x+y+z=7:
(1)先求一个交点,将z随便取值解出x和y不妨令z=0由x+2y=7-2x+y=7解得x=-7/5,y=21/5所以(-7/5,21/5,0)为直线上一点。
(2)求方向向量因为两已知平面的法向量为(1,2,-1),(-2,1,1),所求直线的方向向量垂直于2个法向量。由外积可求方向向量=(1,2,-1)×(-2,1,1)=i j k1 2 -1-2 1 1=3i+j+5k所以直线方向向量为(3,1,5)。
直线的方向向量是什么
方向向量是一个数学概念,空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。直线的方向向量是指和这条直线平行或重合的向量,一条直线的方向向量有无数个。
1、直线上的向量以及与之共线的向量叫做直线的方向向量。
2、所以只要给定直线,便可构造两个方向向量(以原点为起点)。即已知直线ax+by+c=零,则直线l的方向向量为d=(-b,a)或d=(b,-a)。
3、垂直的关系,即方向向量与系数向量作欧氏内积等于零。系数向量就是直线的法向量,不仅仅是直线,乃至n维空间的超平面的法向量也是系数向量。
一般方程式的定义
一般方程式是Ax+By+C=0,直线一般式方程适用于所有的二维空间直线。它的基本形式是Ax+By+C=0(A,B不全为零)。因为这样的特点特别适合在计算机领域直线相关计算中用来描述直线。
平行于x轴时,A=0,C≠0;平行于y轴时,B=0,C≠0;与x轴重合时,A=0,C=0;与y轴重合时,B=0,C=0;过原点时,C=0;与x、y轴都相交时,A*B≠0。
上一篇:
已知两点求直线方程的公式下一篇:
一般式方程的斜率怎么求相关资讯
截距公式是x/a+y/b=1(a≠0且b≠0),其中a指横截距,b指纵截距。截距式是直线或平面的一种表示形式,是指用直线或平面在坐标轴上的截距来写出的直线或平面的表达式。那么,一般...
一般方程的斜率的一般式公式是:k=-A/B。斜率是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差...
向量是具有大小和方向的量,它用箭头表示。在数学中,向量可以用坐标表示。例如,在二维空间中,一个向量可以表示为一个二元组(a,b)。那么,直线的方向向量怎么求呢?直线的方向向量怎么求...
在平面直角坐标系中,任何一个关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)都表示一条直线。我们把简称方程:Ax+By+C=0(其中A、B不同时为0)叫做直线方程的一般...
所有点不在同一平面上的图形叫立体图形。对现实物体认识上的一种抽象,即把现实的物体在只考虑其形状和大小,而忽略其它因素的基础上在平面上的表示。规则立体图形一般都有固定的公式,不规则立...
最新资讯