当前位置:

学生网

 > 

知识解答

 > 

方差和标准差的区别

方差和标准差的区别

2024-02-19 16:08 702人阅读

标准差与方差计算比较简便,又具有比较好的数学性质,是应用最广泛的统计离散程度的测度方法。但是标准差与方差只适用于数值型数据。此外,与均值一样,它们对极端值也很敏感。那么,方差和标准差有什么区别呢?

方差和标准差的区别

1、概念不同。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数;标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根。

2、样本不同。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

3、对于数据的表现不同。真正能反映稳定性的是标准差,因为它的单位和数据的单位是一样的,而方差的单位是数据单位的平方,所以方差有点夸大波动的情况。

4、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量,用来度量随机变量和其数学期望(即均值)之间的偏离程度。标准差在概率统计中常做统计分布程度上的测量,反映组内个体之间的离散程度,平均数相同的两组数据,标准差未必相同。

方差的意义

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差与标准差的计算公式

1、标准差

等于方差的算术平方根=s=sqrt(((x1-x)^2+(x2-x)^2+......(xn-x)^2)/(n-1))。

总体标准差=σ=sqrt(((x1-x)^2+(x2-x)^2+......(xn-x)^2)/n)。

2、方差

S²=〈(M-x1)²+(M-x2)²+(M-x3)²+…+(M-xn)²〉╱n。

相关资讯