函数定义域对函数图像、解析式等都起着决定性的作用,要使得函数解析式中的所有式子有意义,需要找出所有对函数自变量有限制的条件,进而求出函数的定义域。
求定义域的五种常见形式
①整式的定义域为R。整式可以分为单项式还有多项式,单项式比如y=4x,多项式比如y=4x+1。这时候无论是单项式还是多项式,定义域均为{x|x∈R},就是x可以等于所有实数。
②分式的定义域是分母不等于0。例如y=1/(x-1),这时候的定义域只需要求让分母不等于即可,即x-1≠0,定义域为{x|x≠1}。
③偶数次方根定义域是被开方数≥0。例如根号下x-3,这时候定义域就是让x-3≥0,求出来定义域为{x|x≥3}。
④奇数次方根定义域是R。例如三次根号下x-3,定义域就是{x|x∈R}。
⑤指数函数定义域为R。比如y=3^x,定义域为{x|x∈R}。
函数定义域是一个数学名词,是函数的三要素(定义域、值域、对应法则)之一,对应法则的作用对象,指函数自变量的取值范围,即对于两个存在函数对应关系的非空集合D、M,集合D中的任意一个数,在集合M中都有且仅有一个确定的数与之对应,则集合D称为函数定义域。
求函数定义域的方法
1、分式的分母不等于零。
2、偶次方根的被开方数大于等于零。
3、对数的真数大于零。
4、指数函数和对数函数的底数大于零且不等于1。
5、三角函数正切函数中;余切函数中。
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
求函数定义域和值域的例题
【例1】y=1
答案:定义域为R;值域为{1}。
解析:y=1是“y=1(x∈R)”的简写形式。所以,自变量x的取值范围为全体实数,函数值y的取值只有“1”。
【注】实数集“R”的区间形式为“(-∝,+∝)”。
【例2】y=x+1
答案:定义域为R,值域也为R。
解析:由函数图象易知函数自变量x的取值范围为全体实数,函数值y的取值范围也为全体实数。
上一篇:
定义域是指什么下一篇:
定义域可以用集合表示吗相关资讯
分段函数,就是对于自变量x的不同的取值范围有不同的解析式的函数。它是一个函数,而不是几个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。下面我们就来看看,...
圆方程的五种形式:标准式、一般式、参数式、直径式、数字式,圆的标准方程(x-a)²+(y-b)²=r²中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的...
反函数是数学中的一种函数,设函数y=f(X)的定义域是D,值域是(D);如果对于值域f(D)中的每一个y,在D中有且只有一个x使得g(Y)=x,则按此对应法则得到了一个定义在f(D...
指数定义域求解需根据指数函数的表达式y=a^x,其中对a的要求是(a0且a≠1)而对x没有要求,也就是x∈R,因此指数定义域为x∈R,即实数。定义域是函数三要素(定义域、值域、对应...
求函数定义域的方法是设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为...
最新资讯