在指数函数y=a^x中,当a=0时,若x>0,则无论x取何值,a^x恒等于0;若x<0,则a^x无意义。当a<0时,如y=(-2)^x,对x取任何值,在实数范围内函数不存在。纵上可知,指数函数底数必须大于0。
指数函数底数为什么要大于0
当a=1时,y值永远都等于1,研究这样的固定不变量没有价值,因此规定底数不为1。
如果a<0,那么当x是奇数时,y为负数;当x是偶数时,y为正数;当x=1/2时,这个式子本身就没有意义。
综上,为了方便研究,只能强行规定对数的底数大于0且不等于1。
指数函数的一般形式为y=aˣ(a为常数且以a>0,a≠1)(x∈R),要想使得x能够取整个实数集合为定义域,则只有使得a>0且a≠1。
指数函数底数的取值范围
1、正的指数函数:底数的取值范围为(0,∞),即在0和正无穷之间的任意实数都可以作为指数函数的底数。
2、负的指数函数:底数的取值范围为(0,1),即只能介于0与1之间的实数才可以作为指数函数的底数。
3、反号指数函数:底数的取值范围为(-∞,0),即介于负无穷与0之间的实数才可以作为指数函数的底数。
指数函数性质
(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2)指数函数的值域为(0,+∞)。
(3)函数图形都是上凹的。
(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的(图2)。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
对数函数的运算公式
1、lnx+lny=lnxy
2、lnx-lny=ln(x/y)
3、lnxⁿ=nlnx
4、ln(ⁿ√x)=lnx/n
5、lne=1
对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。对数运算,实际上也就是指数在运算。
上一篇:
对数函数的运算法则下一篇:
对数函数的底数有什么要求相关资讯
指数函数是基本初等函数之一。一般地,y=a^x函数(a为常数且以a0,a≠1)叫做指数函数,函数的定义域是R。在指数函数的定义表达式中,a^x前的系数必须是数1,自变量x必须在指数...
底数和指数是数学中指数运算的两个关键概念。底数是一个实数或复数,表示要进行指数运算的基础数字。在指数运算中,底数决定了运算结果的数量级。指数是一个整数,表示底数在运算中重复相乘的次...
指数定义域求解需根据指数函数的表达式y=a^x,其中对a的要求是(a0且a≠1)而对x没有要求,也就是x∈R,因此指数定义域为x∈R,即实数。定义域是函数三要素(定义域、值域、对应...
一般地,y=a^x函数(a为常数且以a0,a≠1)叫做指数函数,函数的定义域是R。[1]注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不...
指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x...
最新资讯