当前位置:

学生网

 > 

学习资讯

 > 

高中数学解题技巧

高中数学解题技巧

2023-11-10 09:07 777人阅读

上了高中之后,难度变化最为明显的就是数学,所学的知识并没有难多少,但是解题的方法却很多遍,解题的思路也很多。需要孩子们养成好的思维方式,才能更好的去解题,那么高中数学解题技巧都有哪些呢?

高中数学解题技巧

1、寻求中间环节

在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

2、配方法解答

通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

3、剔除错误答案

利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4、立体几何题

证明线面位置关系,一般不需要去建系,相对来说更简单。求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系,要注意向量所成的角的余弦值与所求角的余弦值的关系中的范围问题。

5、学会画图

学会画图这点也很重要,人的大脑对图的记忆比文学好,所以学会利用已知条件来假设场景,画出对应的图,这样非常有利于解题,而且正确率是比较高的,一般情况题都来源于生活中,来解决实际问题,这样也有助于你将课本知识和实际联系在一起。

6、导数概念必须要理解

利用导数判别可导函数的极值的方法汲求一些实际问题的最大值与最小值,复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,要能正确求导,必须做到熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,以及复合函数的求导法则。

在高中数学当中,解题的思路很关键,要多用不一样的思路去思考问题,每道题的切入点不一样,但是用到的基础知识却是一样的,所以就需要同学们灵活运用所学知识。

相关资讯